Domestic Hot Water

A guide to domestic hot water solutions that improve comfort, marketability, and energy efficiency.
The performance of domestic hot water systems is often contingent on the function of other building systems. Domestic hot water upgrade decisions should be made in the context of how other systems will impact hot water heating operation and performance.

Investing in operations and maintenance best practices ensures that building systems run optimally, enabling proper performance in existing equipment and maximizing return on investment in new systems. Best practices for domestic hot water systems include:

- Install low-flow fixtures and aerators.
- Insulate pipes and tanks.
- Monitor pipes and hot water heaters for leaks using leak-detection software or periodic field inspections.
- Repair leaks and clean pipes of buildup.
- Reduce set points to appropriately reflect building hot water needs.
- Conduct routine surveys and continual commissioning of equipment to ensure optimal system functioning.

Domestic hot water systems that rely on the same boiler used for heating the building waste considerable amounts of fuel during warmer months when heating is not required.
hot water efficiency measures

Installing high-efficiency heating equipment and implementing simple maintenance measures, such as installing pipe insulation and adjusting set points, reduces heat and water waste and reduces utility costs.

Key

<table>
<thead>
<tr>
<th>EASE OF IMPLEMENTATION</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE</td>
<td></td>
</tr>
<tr>
<td>not easy</td>
<td></td>
</tr>
<tr>
<td>easy</td>
<td></td>
</tr>
</tbody>
</table>

Ease of Implementation reflects technical and financial feasibility.

Measures marked “not easy” are typically expensive, complex, highly disruptive, or pay back slowly, while “very easy” measures tend to be inexpensive, quick, and straightforward.

<table>
<thead>
<tr>
<th>PROJECT IMPACT</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT</td>
<td></td>
</tr>
<tr>
<td>low impact</td>
<td></td>
</tr>
<tr>
<td>moderate impact</td>
<td></td>
</tr>
<tr>
<td>high impact</td>
<td></td>
</tr>
</tbody>
</table>

Project Impact reflects potential to reduce energy and emissions and to improve system performance.

“Low impact” measures typically yield minor savings and incremental improvements, while “high impact” measures achieve major savings and comprehensive improvements.

Reduce Water Loss

Install Low Flow Fixtures & Appliances

Install low-flow fixtures that use far less water than conventional fixtures (e.g., WaterSense labeled models) and high-efficiency, ENERGY STAR-certified clothing and dish washers.

<table>
<thead>
<tr>
<th>EASE</th>
<th>IMPACT</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clean & Repair Piping

Clean and repair piping as needed. Old pipes are susceptible to leaks and miserable buildup that can reduce flow rates.

<table>
<thead>
<tr>
<th>EASE</th>
<th>IMPACT</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reduce Water Loss, cont.

Install Aerators

Install aerators to reduce the flow of water from faucets without reducing pressure.

<table>
<thead>
<tr>
<th>EASE</th>
<th>IMPACT</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Install Leak Detection Sensors

Install sensors to identify when and where leaks occur.

<table>
<thead>
<tr>
<th>EASE</th>
<th>IMPACT</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RATING SYSTEM METHODOLOGY

Ratings and benefits of energy conservation measures were assigned based on NYC energy audit data and analysis by industry experts. Actual results will vary by building type, use, and baseline conditions.
Reduce Domestic Hot Water Heat Loss

<table>
<thead>
<tr>
<th>Insulate Pipes & Tanks</th>
<th>Add Steam Condensate Heat Recovery</th>
<th>Install Recirculation Controls</th>
<th>Decrease DHW Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add insulation to reduce standby and distribution heat losses from hot water sitting in storage tanks and traveling through pipes to fixtures.</td>
<td>Install a heat exchanger and storage tank to recycle heat from steam condensate and use it to pre-heat DHW.</td>
<td>Install and program variable speed recirculation controls that respond to demand or time-of-day scheduling to reduced heat waste.</td>
<td>After taking measures to reduce heat loss, lower the DHW temperature set-point to save energy and reduce risks of scalding.</td>
</tr>
</tbody>
</table>

Reduce Domestic Hot Water Heating Demand

<table>
<thead>
<tr>
<th>Separate DHW from Steam Boilers</th>
<th>Consider Tankless or Instantaneous DHW Heaters</th>
<th>Upgrade DHW Boiler</th>
<th>Convert to Air-To-Water Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid running an over-sized boiler for DHW in the summer. Install a smaller, dedicated DHW boiler and/or storage tank.</td>
<td>Buildings with low DHW demand should consider installing tankless water heaters, which are more efficient and have a longer lifespans than systems that use a storage tank.</td>
<td>Choose a high-efficiency hot water boiler (e.g. condensing models) for fuel-fired systems.</td>
<td>Consider installing air-to-water heat pumps—a high efficiency electric system that transfers heat from air to water, even at low outdoor temperatures.</td>
</tr>
</tbody>
</table>
Further Reading

The BE-Ex solution packages cover the following building systems:

- Heating
- Cooling
- Ventilation
- Domestic Hot Water
- Lighting & Plug Loads
- Envelope

To access the suite of solution packages, visit: be-exchange.org/anatomy-solutions

Disclaimer

While every effort has been made to contain correct information, neither Building Energy Exchange nor the authors or project advisors makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. None of the parties involved in the funding or the creation of this study assume any liability or responsibility to the user or any third party for the accuracy, completeness, or use or reliance on any information contained in the report, or for any injuries, losses or damages, arising from such use or reliance.

Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Building Energy Exchange. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Building Energy exchange or Advisory Groups. As a condition of use, the user pledges not to sue and agrees to waive and release Building Energy Exchange, its members, its funders, and its contractors from any and all claims, demands, and causes of action for any injuries, losses or damages that the user may now or hereafter have a right to assert against such parties as a result of the use of, or reliance on, the report.

© Building Energy Exchange
All Rights Reserved
April 2020

Acknowledgements

The Anatomy exhibit was funded in part by the New York State Energy Research and Development Authority (NYSERDA) through a Cleaner, Greener Communities (CGC) grant, received in partnership with the New York City Mayor’s Office of Sustainability.

Exhibit Advisory Group

Lois Arena, Steven Winter Associates
Stephen Cassell, Architecture Research Office
Chris Cayten, CodeGreen Solutions
Loic Chappoz, NYSERDA
John Lee, NYC Mayor’s Office of Sustainability
Jeffrey Perlman, Bright Power
Josephine Zurica, Dagher Engineering

Further Reading

The BE-Ex solution packages cover the following building systems:

- Heating
- Cooling
- Ventilation
- Domestic Hot Water
- Lighting & Plug Loads
- Envelope

To access the suite of solution packages, visit: be-exchange.org/anatomy-solutions

Disclaimer

While every effort has been made to contain correct information, neither Building Energy Exchange nor the authors or project advisors makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. None of the parties involved in the funding or the creation of this study assume any liability or responsibility to the user or any third party for the accuracy, completeness, or use or reliance on any information contained in the report, or for any injuries, losses or damages, arising from such use or reliance.

Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Building Energy Exchange. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Building Energy exchange or Advisory Groups. As a condition of use, the user pledges not to sue and agrees to waive and release Building Energy Exchange, its members, its funders, and its contractors from any and all claims, demands, and causes of action for any injuries, losses or damages that the user may now or hereafter have a right to assert against such parties as a result of the use of, or reliance on, the report.

© Building Energy Exchange
All Rights Reserved
April 2020

Acknowledgements

The Anatomy exhibit was funded in part by the New York State Energy Research and Development Authority (NYSERDA) through a Cleaner, Greener Communities (CGC) grant, received in partnership with the New York City Mayor’s Office of Sustainability.

Exhibit Advisory Group

Lois Arena, Steven Winter Associates
Stephen Cassell, Architecture Research Office
Chris Cayten, CodeGreen Solutions
Loic Chappoz, NYSERDA
John Lee, NYC Mayor’s Office of Sustainability
Jeffrey Perlman, Bright Power
Josephine Zurica, Dagher Engineering