Ventilation

A guide to ventilation solutions that improve comfort, marketability, and energy efficiency.

The BE-Ex solution packages are a suite of six documents compiled from the Anatomy of an Energy Efficient Building exhibit on view at Building Energy Exchange’s downtown resource center, or virtually at be-exchange.org/anatomy.
The performance of ventilation systems is often contingent on the function of other building systems. Ventilation upgrade decisions should be made in the context of how other systems will impact ventilation operation and performance.

Investing in operations and maintenance best practices ensures that building systems run optimally, enabling proper performance in existing equipment and maximizing return on investment in new systems. Best practices for ventilation systems include:

1. **Envelope → Ventilation**
 High performance building envelopes restrict outside air from entering occupant spaces, requiring balanced ventilation systems to ensure fresh air supply.

2. **Ventilation → Heating & Cooling**
 Energy recovery ventilation systems pre-condition incoming outdoor air, reducing demand on the heating and cooling system.

 - Clean and inspect ERV units periodically.
 - Clean ductwork to clear dust and debris, repair damaged ductwork, and seal gaps and holes along ductwork and at register and fan connections.
 - Calibrate fan speed and pressure settings and adjust airflow rates at registers.
 - Clean or replace interior air filters.
 - Conduct air quality surveys of interior spaces.
ventilation efficiency measures

Balanced, energy-recovery ventilation systems improve indoor air quality while reducing emissions and energy use. Systems components are interdependent and should be addressed together under a comprehensive scope.

Key

<table>
<thead>
<tr>
<th>EASE OF IMPLEMENTATION</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>operations & maintenance Keeps building performing optimally when completed on a routine basis</td>
</tr>
<tr>
<td></td>
<td>health & comfort Enhances indoor environmental quality and advances occupant wellbeing</td>
</tr>
<tr>
<td></td>
<td>marketability Improves aesthetics and upgrades occupant spaces, increasing appeal to potential tenants</td>
</tr>
<tr>
<td></td>
<td>future-ready Puts building on path for long-term emissions reduction and legislative compliance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT IMPACT</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>low impact</td>
<td>moderate impact</td>
</tr>
</tbody>
</table>

Project Impact reflects potential to reduce energy and emissions and to improve system performance. "Low impact" measures typically yield minor savings and incremental improvements, while "high impact" measures achieve major savings and comprehensive improvements.

RATING SYSTEM METHODOLOGY

Ratings and benefits of energy conservation measures were assigned based on NYC energy audit data and analysis by industry experts. Actual results will vary by building type, use, and baseline conditions.

Clean & Tune System

Repair & Calibrate Fans

Replace fans belts and adjust fan settings to ensure every space in the building achieves necessary exhaust levels.

Clean Ducts & Calibrate Registers

Clean ducts to improve airflow and indoor air quality. Clean and calibrate registers when adjusting fans to maintain building-wide ventilation targets.

Exhaust Stale Air & Pollutants

Install Self-Balancing Registers

Install grilles/registers that automatically damper airflow to achieve consistent ventilation. New grilles provide an updated aesthetic.

Repair Damaged Ductwork

Coordinate repairs with cleaning and sealing work to streamline scheduling and costs.
ventilation efficiency measures

Exhaust Stale Air & Pollutants, cont.

Install Direct-Drive Exhaust Fans
Install right-sized fans with built-in, variable speed controllers. Adjust settings to meet pressure requirements for the system.

Seal Leaks in Ducts & Shafts
Seal leaks to improve airflow control. Use mineral wool/fireblocking foam for large holes; use remote spray sealing for finer holes.

Install Occupancy Sensors
Install motion or CO2 sensors to adjust ventilation rates according to occupancy levels. (Must also have variable speed fans and damper controls in place).

Recalibrate Fans & Registers
Recalibrate system components after any major work to ensure ventilation and efficiency levels are maintained.

Provide Fresh Air While Reducing Energy Loads

Install or Commission an Economizer
Install or program economizers to use outdoor air for free cooling when the temperature drops below a designated point.

Install Energy Recovery Ventilator (ERV)
Install ERVs to recover waste heat air from exhaust and pre-temper supply air. Reducing heating and cooling loads may allow for equipment to be downsized, freeing up roof space.

Install or Commission an Economizer
Install or program economizers to use outdoor air for free cooling when the temperature drops below a designated point.

Install Dedicated Outdoor Air System
Install separate air handling units for ventilation and for heating/cooling systems to increase efficiency.

Run Ventilation Only As Needed
Run ventilation only as needed.

Install Zoning Wiring & Controls
Establish zoning to enable the use of automated ventilation control strategies like scheduling, occupancy, and demand-based controls.

Install Occupancy Sensors
Install motion or CO2 sensors to adjust ventilation rates according to occupancy levels. (Must also have variable speed fans and damper controls in place).
ventilation efficiency measures

Run Ventilation Only As Needed, cont.

<table>
<thead>
<tr>
<th>Install Fan Timers/Schedule Setbacks</th>
<th>Upgrade/Integrate HVAC Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install timers or schedule setbacks to reduce ventilation rates in places with predictable occupancy patterns.</td>
<td>Upgrade to a centralized building management system or integrate ventilation, heating, and cooling controls.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EASE</th>
<th>IMPACT</th>
<th>ADDED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EASE

IMPACT

ADDED BENEFITS
Further Reading

The BE-Ex solution packages cover the following building systems:

- Heating
- Cooling
- Ventilation
- Domestic Hot Water
- Lighting & Plug Loads
- Envelope

To access the suite of solution packages, visit: be-exchange.org/anatomy-solutions

Disclaimer

While every effort has been made to contain correct information, neither Building Energy Exchange nor the authors or project advisors makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. None of the parties involved in the funding or the creation of this study assume any liability or responsibility to the user or any third party for the accuracy, completeness, or use or reliance on any information contained in the report, or for any injuries, losses or damages, arising from such use or reliance.

Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Building Energy Exchange. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Building Energy exchange or Advisory Groups. As a condition of use, the user pledges not to sue and agrees to waive and release Building Energy Exchange, its members, its funders, and its contractors from any and all claims, demands, and causes of action for any injuries, losses or damages that the user may now or hereafter have a right to assert against such parties as a result of the use of, or reliance on, the report.

Acknowledgements

The Anatomy exhibit was funded in part by the New York State Energy Research and Development Authority (NYSERDA) through a Cleaner, Greener Communities (CGC) grant, received in partnership with the New York City Mayor’s Office of Sustainability.

Exhibit Advisory Group

Lois Arena, Steven Winter Associates
Stephen Cassell, Architecture Research Office
Chris Cayten, CodeGreen Solutions
Loic Chappoz, NYSERDA
John Lee, NYC Mayor’s Office of Sustainability
Jeffrey Perlman, Bright Power
Josephine Zurica, Dagher Engineering

© Building Energy Exchange
All Rights Reserved
April 2020