Chilled Water Plant Optimization
Highly efficient centralized cooling upgrades that increase energy efficiency and savings.

tech overview

applicable building types
hotels, large multi-family, institutional, industrial, and commercial

implementation
at equipment replacement

fast facts
• reduces GHG emissions
• extends equipment life
• reduces maintenance and utility costs
• provides high turndown and heat recovery

costs & benefits*

GHG Savings

Tenant Experience Improvements

Utility Savings

Capital Costs

Maintenance Requirements

*ratings are based on system end use, see back cover for details.

be ex
building energy exchange

To get help today: call (212) 656-9202 or visit nyc.gov/RetrofitAccelerator
getting to know chilled water plants

Cooling with chilled water is a centralized air conditioning method common in large buildings. Efficiency and performance can be improved through the appropriate selection and optimization of high-performance equipment and controls.

how do chilled water plants work?

Chilled water plants use water to provide centralized cooling, and are typically found in large multifamily buildings as well as in more complex constructions such as large commercial, institutional, and industrial buildings.

Chilled water is generated by a chiller and then pumped through the building to air handlers or fan coil terminal units that cool various spaces (see Fig 1.). Warm return water is pumped back to the chiller where unwanted heat is typically rejected via a separate condenser water loop with an outdoor cooling tower. Usually located on a building’s roof, a cooling tower releases heat to the outside air using evaporation.

Chilled water plants are often paired with hydronic heating systems to provide heating using the same distribution piping and terminal units. See our Hydronic Heating tech primer to learn about the heating side of the system.

This tech primer outlines a high performance chilled water plant retrofit and highlights opportunities to reduce greenhouse gas emissions, lower maintenance and utility costs, and maximize efficiency.

Assess

Always consult a qualified service provider before undertaking any building upgrades.

Coordinate Upgrades for Maximum Savings

Implementing building envelope improvements or internal heat load reductions (such as lighting upgrades) at the time of a chilled water plant retrofit will reduce the building’s heat load and lower demand on the cooling system.

When future building improvements are completed, energy savings may go unrealized without optimizing the chilled water plant for newly reduced loads.

Training and Maintenance

Knowledgeable staff are fundamental to maintaining chilled water systems. Trained staff can identify and address maintenance items independently or know when to engage qualified contractors.

Energy savings can only be realized with regular maintenance of the system.
how to upgrade chilled water plants

A high-performance retrofit typically includes updating chillers and terminal units, optimizing heat rejection, correctly sizing pumps, and installing smart controls.

retrofit solutions

Chilled water plants are comprised of a number of components that each contribute to the overall performance of the system. Completing a holistic suite of measures to address all of these components will yield the greatest results.

A Upgrade Chilling Equipment—Install either high performance, electric chillers or air-to-water heat pumps.

1. **Electric Chillers**—Electric chillers are significantly more efficient than fuel-fired models, however the NYC Fire Code requires an operating engineer to be present whenever large electric chillers are in operation. See Maintenance Requirements on page 4 for more information.
 - For maximum efficiency, a chiller must be designed for the highest supply water temperature possible, as well as the highest differential temperature possible. This will likely necessitate new terminal units that meet the same requirements (see section B).
 - Select chillers with magnetic bearings and variable speed compressors, which reduce internal friction and allow for modulation; the ability to operate at variable speeds instead of simply “on” or “off.” This will increase efficiency at times when the cooling system is at part load.
 - Install a waterside economizer to provide “free” cooling to the building (without needing to use the chiller) during periods of mild outdoor temperatures. Selecting terminal units with a high supply temperature requirement will maximize this benefit.

2. **Air-To-Water Heat Pumps**—Air-to-water heat pumps are an alternative to electric chillers and have the ability to serve a building’s heating and cooling needs. Implementing this new technology should be evaluated in lieu of a traditional chiller and cooling tower setup.
 - Heat pumps are available with a variety of refrigerant types that each have different effects on the pump's applicability, performance, and global warming potential.

B Install High Temperature-Drop Terminal Units—Terminal units with at least 15°F temperature difference between entering and leaving water temperatures help the whole system operate efficiently.
 - Select terminal units with as high of an entering water temperature as possible.

C Optimize Heat Rejection—Cooling towers should be selected for the lowest overall size and power consumption for greatest efficiency.
 - Install variable speed fans in cooling towers to save energy during mild weather.
 - Install a condenser water heat recovery system for buildings with central domestic hot water (DHW) plants. Heat that would normally be rejected in the cooling tower can instead be used to heat DHW, increasing energy savings for both systems.

D Properly Size Water Pumps—Oversized pumps cannot modulate to low enough speeds, operate at poor efficiencies, and have increased maintenance issues.
 - Install correctly sized pumps paired with variable frequency drives to maximize energy savings.
 - Pumps must be sized based on calculated headloss (the loss of pressure due to friction) and flow rate in the system, which is highly dependent on terminal unit selection.

E Install Smart Controls—Chilled water plants typically perform best when centrally controlled through a building management system (BMS).
 - The BMS should include chiller staging and speed control, cooling tower staging and fan speed control, chilled water temperature setpoint, condenser water temperature setpoint, and all control and bypass valves for economizers.
Maintenance Requirements

Optimized chilled water plants require a moderate level of maintenance. The NYC Fire Code requires that a refrigeration system operating engineer be on staff and present whenever a larger refrigeration system is in operation. Modular chiller designs may be able to bypass this requirement, depending on refrigerant type, individual module size, and aggregate system size. Cooling towers have strict cleaning and maintenance protocols under NYC Local Law 77, which requires annual registration, inspection, maintenance, disinfection, cleaning, and testing in order to ensure safe and hygienic operation. Some building owners opt for a dry cooler in order to bypass this requirement.

Utility Savings

Although energy use will be reduced, cost savings may be minimal when switching from fuel-fired to electric chillers due to the current cost of electricity. Future changes in utility costs should be considered when evaluating project feasibility.

Capital Costs

A chilled water plant retrofit requires a very large capital investment and is best implemented at the time of equipment replacement.

Greenhouse Gas (GHG) Savings

An optimized chilled water plant greatly reduces cooling related GHG emissions.

Tenant Experience Improvements

Tenants' everyday experience will remain largely unchanged, however, improving the overall function of the cooling plant will provide residents with more reliable and efficient cooling.

Utility Savings

Although energy use will be reduced, cost savings may be minimal when switching from fuel-fired to electric chillers due to the current cost of electricity. Future changes in utility costs should be considered when evaluating project feasibility.

Capital Costs

A chilled water plant retrofit requires a very large capital investment and is best implemented at the time of equipment replacement.

Maintenance Requirements

Optimized chilled water plants require a moderate level of maintenance. The NYC Fire Code requires that a refrigeration system operating engineer be on staff and present whenever a larger refrigeration system is in operation. Modular chiller designs may be able to bypass this requirement, depending on refrigerant type, individual module size, and aggregate system size. Cooling towers have strict cleaning and maintenance protocols under NYC Local Law 77, which requires annual registration, inspection, maintenance, disinfection, cleaning, and testing in order to ensure safe and hygienic operation. Some building owners opt for a dry cooler in order to bypass this requirement.

*The Costs & Benefits rating system is based on a qualitative 1 to 4 scale where 1 (weakest) is lowest and 4 (strongest) is highest. Green correlates to savings and improvements, orange correlates to costs and requirements. Ratings are determined by industry experts and calculated relative to the system end use, not the whole building.

Note: GHG & utility savings are dependent on existing equipment and fuel type.

This report is financed in part through the NYSERDA Cleaner, Greener Communities Program.