Affordable Electrification in Buildings

Charlotte Matthews, Director of Sustainability

Who is Sidewalk Labs?

Bridging the Urbanist + Technologist Divide

Who is Sidewalk Labs?

In addition to the generous contributions of multiple stakeholders and advisors, Sidewalk Labs' sustainability strategy has been informed by the following consultants:

- TurnCraft Advisors
- BuildingGreen Inc.
- Lawrence Berkeley Labs (US National Lab)
- **Smarter Grid Solutions**
- WSP Sustainability and Energy
- Stantec Design engineering work

- Kerr Wood Leidal
- Building Studies: Building EQ, Urban Equations and Energy ProfilesOpti RTC
- Lion Advisors
- SD Global Advisors, LLC
- Deloitte (Infrastructure)
- TWG (The Working Group) Software Company

Sidewalk Toronto also engaged an Advisory Group to provide feedback throughout the process with representation from MaRS Cleantech, the Canada Green Building Council, the Atmospheric Fund, the Centre for Social Innovation, Project Neutral, Canadian Urban Institute, Quality Urban Energy Systems of Tomorrow (QUEST), among others.

What is climate positive?

Development that reduces city's overall GHG emissions

Reduce onsite GHG emissions to near zero

Use the development's infrastructure or technology to offset existing city emissions

SIDE WALK LABS

Path to climate positive - advanced systems

In Toronto, electrifying everything is a path to climate positive..

This data is compiled by the Toronto Atmospheric Fund (TAF) for the Greater Toronto and Hamilton Area (2017). TAF uses a different GHG accounting protocol than C40.

Toronto Power Grid

183

Natural Gas

...But electrifying without reducing the load is unaffordable

Price of electricity vs. natural gas,

which would increase if electrification means new power plants and infrastructure expansion

Published rates, Ontario, 2017

Ontario projects unmanaged electrification could quadruple peak demand and force new generation to be built by 2024.

For Quayside, it would double the size of our local grid.

5.5

Business as Usual (BAU)

11.5 MW Unmanaged **Electrification**

Sidewalk Toronto's path to typically-sized electrical grid

Advanced Power Grid + Optimizing Building Controls

Passive House-inspired design reduces heating and cooling loads

Advanced Power Grid + Optimizing **Building Controls**

LOW ENERGY BUILDINGS

EQUATION

PERFORMANCE

Quantifying modelled vs. metered energy use of Toronto multifamily buildings

Energy Profiles Limited

LOW ENERGY BUILDINGS

Passive House-inspired buildings: more than just the envelope

Insulation and Thermal Breaks

Carefully sized windows, adding gaskets and manufactured "thermal breaks"

Blower door tested to meet compliance standards

Balanced Ventilation

Balanced supply and exhaust with ducted ventilation to all living spaces (incl. bedrooms)

LOW ENERGY BUILDINGS **Buildings will meet cutting edge performance goals**

- Assessment type
 - Ο
 - Ο

- **Update Frequency**
 - 0 increases energy and emissions

- **Exporting to other cities** Ο
 - **Emissions Buildings Plan.**

Representative model: LEED and Code Performance data: Toronto Green Standard (TGS) and Passive House

Updates every 4 years, gradually performance requirements over time

City of Vancouver is a notable leader in the recent implementation of their Zero

LOW ENERGY TALL TIMBER BUILDINGS

Factory-based mass timber buildings

Faster Build Times Less on site construction time due off-site prefabrication

Digital Design Coordination of construction and operation managed digitally

> **Improved Sustainability** Mass timber structures generate 1/10th the amount of carbon vs. concrete equivalents, sequester carbon, and produce less construction waste due to factory's economy of scale

Reduced Costs Up to 10% cheaper than other structural options and trending to become less expensive in many markets

2263.83

Biophilic Design Creating spaces that evoke nature, because it promotes wellness

Targeting Cradle to Cradle® Shikkui plaster (lime and plant fiber), floor materials and tall timber

LOW ENERGY TALL TIMBER BUILDINGS

Sustainable supply chain that supports local industry

Thermal grid reduces grid size to 6.1 MW

Advanced Power Grid + Optimizing Building Controls

THERMAL GRID The challenge of heating without fossil fuels

Sidewalk Labs study to quantify the "Performance Gap" - the difference between modeled energy use and actual energy use

The study of Toronto MURBs found that buildings with water source heat pumps use nearly as much gas as those with traditional hot water heating.

Learning: Heat pump loops require considerable tempering, most often provided by boiler fed hot water.

End use energy breakdown of Toronto MURBs, categorized by HVAC system type.

A tool to enable outcome based codes

ADVANCED POWER GRID

● **Stagnant** targets → **dynamic** targets

 Data on energy use, occupancy, weather, etc → dynamic maximum EUI, TEDI and GGI metric for buildings

Perform					
	монтн	YEAR			
are higher due to 12 of unusually cold					
	TEUI 15 kw UNDER	h/m²			
)	30kWh/m²	45kWh/m²			
	GHGI 35 kg over	1/m²			
/m²	75kg/m²	30kWh/m²			

WEEK

70kW

BUDGET UPDATE

BUDGET

Heating costs straight days temperatures

THERMAL GRID

Heating and cooling at Quayside: geothermal wells and sewer heat

THERMAL GRID

At scale, thermal grid could connect to other resources and export clean energy

Proposed Enwave Connection Waste Heat Recovery

Commercial Data Centre Waste Heat Recovery

Cherry Street Sewage Pump Station Wastewater Heat Recovery

Expansion of Possible Industrial Tenants Waste Heat Recovery

Ashbridges bay Wastewater Treatment Plant Wastewater Heat Recovery

xpanded Film Studio &

Media District

Anaerobic Digestion Facility **Biogas Creation**

Local Power Plant Waste Heat Recovery

Advanced power grid reduces grid size to business as usual with PV + **battery + automated demand response**

Advanced Power Grid + Optimizing **Building Controls**

Quayside Plan: Designed for rate pilots, resiliency, & islanding capabilities

Served by two independent substations, each with the ability to serve the entire neighbourhood

Designed for islanding of the neighbourhood and individual buildings

to allow use of onsite resources during a power outage

On-site energy resources

include solar PV and biodiesel emergency generators, supplemented by battery storage

Energy will be priced to reflect real time GHG intensity

Dynamic Rate Engine" Exposing customers to the hourly cost of electricity generation and demand

Solar and battery transaction platform: Pricing and allocating shares of solar and batteries to customers; offering insulation

from highest-priced power

Sidewalk Labs' vision to give residents the utility cost that they choose

- Integrates smart thermostats
- and Smart Grid enabled
- Offers solar PV and battery share purchase recommendations
- Allocates central heating and cooling costs to residents based upon their time of use
- Enables residents to set their utility bill cost and adjusts home

Study: Realizing the extent of commercial tenant energy waste

In-suite office electricity loads (plug loads and lighting) for approximately 75 sub-metered tenants in Toronto office buildings.

Sidewalk Labs' vision to eliminate energy waste in commercial buildings

Enabling workers to conveniently communicate their comfort preferences and receive direct feedback on how their preferences can be met.

Quayside Progress: >85% GHG reduction from current emissions

Getting over the finish line

Tapping the full potential of wastewater from Ashbridges Bay would enable the project to give back 70,444 annual tonnes of CO2, or nearly 0.9 tonnes per person. Sidewalk Labs could achieve an additional 0.1 tonnes per capita offset through the creation of biogas from anaerobic digestion.

	-0.01	-0.9		
			-0.1	
ain		Thermal Grid Expansion		

CLIMATE POSITIVE

Management

SMART DISPOSAL CHAIN

Sidewalk Toronto's path to 80% waste diversion from landfill

Currently, just 27% of Multi-Unit Residential and 17% of Commercial building waste is diverted from landfill in Toronto.

Green infrastructure uses monitoring to measure performance and predict flows

ACTIVE STORMWATER MANAGEMENT

Combination of green roofs and blue roofs for detention and retention

Bio-Retention Type1 - mixed open planters and paving on soil cells - promotes infiltration

Bio-Retention Type2 - planters on podium - no infiltration - connected to type 1 where possible for infiltration

Bio-Retention Type3 - street trees in soil cell - infiltration only possible on small street

35% Green Roof

Open Runnel

Covered Runnel (Accessible)

Planted Stormwater Channel

Direction of Overland Flow

Subsurface Connection

Opportunity for Below Grade Infiltration

Thank You