New Energy Auditing Standards for New York Energy Audit Levels 1, 2 and 3

Jim Kelsey, P.E., BEAP President, kW Engineering

© kW Engineering, Inc., All rights reserved

kW & Jim

- Commercial & Industrial
- 50% business = private
- 50% business = IOUs
- Consulting Engineering
- Building Data Science

- 30 years in practice
- Chair ASHRAE Audits Standard
- Founding Board Member CA EE Industry Council

Acknowledgments

Many thanks to the members of SPC 211 who's work on Std 211-2018 has helped raise the bar for energy audits and from whom I've learned so much.

- Barry Abramson
- Chris Balbach
- Michael Bobker
- David Eldridge
- Fred Goldner
- Ellis Guiles
- Adam Hinge
- Glenn Hourahan
- Bruce Hunn

- Dennis Landsberg
- John Lee
- Paul Mathew
- Ron Nelson
- Tom Paxson
- Xiaohui Zhou
- Stan Harbuck
- Supriya Goel
- Ben O'Donnell

1st Edition emphasized:

Levels of Effort
I, II, III
Forms
Audit forms
Site use

Became de facto standard

Procedures for Commercial Building Energy Audits

"De facto" standard

- Best Practice Methods
 - Site visit methods
 - Measurement methods
 - Economic evaluation
 - How to get a good bid

Resources

- Audit forms
- EEM ideas
- Simulation checklists

But way too much "leeway"

Victims of our own success

3 Levels, What's the difference?

Scoping

How do you compare to peers? Potential? Qualitative **2** Site specific

Savings

Costs

Economics

Design Development Risk mitigation,

Best cost/impact estimates

Life-cycle costing

Scopes build

Why write a standard?

- Leeway → "apples and oranges" bidding
- Cities with mandatory ordinances found difficult to enforce – wrote their own
- Efficiency from consistent reporting

Levelized Cost of Energy (\$/MWh)

SOURCE: 1) Generation: EIA, Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook March 2018 2) EE as a resource; Molina, M. 2014. "The Best Value for America's Energy Dollar: A National Review of

the Cost of Utility Energy Efficiency Programs". Report Number U1402. Washington DC: ACEEE.

Engineers? PEs? Contractors?

Most people reply, in effect, "me."

Who's qualified?

INFO GRAPHIC

GRAPHIC

Who's qualified?

qualified energy auditor: an energy solutions professional who assesses building systems and site conditions; analyzes and evaluates equipment and energy usage; and recommends strategies to optimize building resource utilization. Experience must include completion of five commercial (non-residential) building energy audits within the past three years or a cumulative completion of ten or more commercial building energy audits. The auditor must be one of the following:

- a) A person who holds a certification from a credentialing program approved by the U.S. Department of Energy Better Buildings Workforce Guidelines for Building Energy Auditors or Energy Managers.
- b) A licensed Professional Engineer or a Licensed Contractor specifically approved to conduct energy audits by the *authority having jurisdiction (AHJ)*.
- c) A person approved as qualified by the *authority having jurisdiction (AHJ)*.

Informative Note: For a current listing of certifications that meet the requirements of the DOE's Better Building Workforce Guidelines see the DOE's website at [URL omitted]. Only credentialing programs that specifically certify Building Energy Auditors or Energy Managers are applicable.

betterbuildingssolutioncenter.energy.gov/workforce/participating-certifying-organizations

Value of an Audit

Many share an implicit assumption...

Not goals

- **Best Practices**
- Consistency of Measures [which is ≠ Quality]
- Overly prescriptive methods or recommendations
- "Virtual" or "Remote" audits
- Prescriptive actions for owners

Standard 211 Sets the bar for the minimum required procedures and reporting requirements that can be called "ASHRAE Level X"

Organization

BODY

- 1. Purpose
- 2. Scope
- 3. Definitions
- 4. Compliance
- 5. Procedures
- 6. Reporting
- 7. References

NORMATIVE NFORMATIVE

ANNEXES

- A. Compliance Form
- B. Savings Calcs
- C. Reporting Forms
- D. Sample Outlines
- E. Data Exchange
- F. Model Calibration
- G. Risk Assessment

Level "0"

Billing data

Metered and "delivered"

Fuel cost breakdown

Energy Use Intensity (EUI)

Energy Cost Index (ECI)

Benchmarking

ENERGY COST BREAKDOWN BY FUEL TYPE

Benchmark

HISTOGRAM 1

Source: bpd.lbl.gov

EUI / ECI

Existing Building EUI/ECI

Skates	Acme Rocket	Building Name
	94,241	Gross Conditioned Square Feet
	147.6	E UI _{BLD} (kBtu/s f/yr)
	77.4	E UI _{SITE} (kBtu/s f/yr)
	\$ 3.21	Site ECI (energy cost index or \$/sf/yr)
-		*EUI: Energy Use Intensity

*E UI: E nergy Use Intensity

Which begs the question...

Energy Efficient?

But do simple EUI's encourage the right behavior? What is green?

Level 1

Purpose: To assess the potential at a given sites with a brief, low-cost, qualitative study

Changes

- Qualitative only
- Did not make lower qualifications "bar"

Level 1 Audit - Recommended Energy Efficiency Measure Summary

Low-Cost and No-Cost Recommendations	Modified System	Impact on Occupant Comfort or IEQ	Other Non- Energy Impacts	Cost	Savings Impact	Typical ROI	Priority
Add VFD to Chilled Water Pumps	Ventilation	None	None	low	high	high	high
Convert manual radiator valves to thermostatic models	Space Heating	Improved occupant None me comfort		medium	high	medium	medium
Demand Controlled Ventilation	Ventilation	e.g., None	None	medium	low	medium	medium
Repair Steam Leaks	Space Heating	Improved occupant comfort	Increase equipment longevity	low	high	high	high
Potential Capital Recommendations	Modified System	Impact on Occupant Comfort	Other Non- Energy Impacts	Cost	Savings Impact	Typical ROI	Priority
Replace Boiler	Space Heating	Setpoint maintenance improvement	Reduced maintenance costs	high	medium	low	medium

Cost	Savings Impact	Typical ROI	Priority
low	medium	high	high

What didn't change

All the basics;

- site-specific cost savings,
- energy savings,
- project costs,
- Simple economic reporting (Payback, ROI)

Avoided any responsibility for IAQ/IEQ or hazardous conditions

"if you see something, say something"

Level 2

Changes

- Quality Assurance / Quality Control
- Distributed Energy Resource Evaluation
- Reporting Form Standardization

Calculations

Have to use the same methods consistently, for energy disaggregation, savings, and demand savings calcs

~	•	
Sa	vin	PQ
		6

3 kW 9,000 kWh

Level 2 QA/QC

Level 2 Audit - QA/QC

user input calculated

Projected EEM Savings Levels QA/QC

		Savings by End Use							E	End Use Sav
	Utility 1	Uti	ility 2	Utility 3	3 T(otal Energy	Util	ity 1	Utility 2	
					Purchase	ed				
End Use Category*		Electricity	Natu	ural Gas	Steam (II	/bs T	otal Energy	% Elec	ctricity	% Natural
<i>.</i> ,		(kWh)	(the	erms)	District Ste	eam)	[kBtu]	Sav	rings	Gas Savings
s										
Air Distribution (fans))	9,000	2				30,708		38%	00
Space Heating		11,000	11,000 8,000 40,000		885,292		22%	539		
Lighting	Lighting 25,000		85,300		50%	09				
Space Heating				(200)			(20,000)		0%	-19
Air Distribution (fans))	9,000	с				30,708		38%	0%
Space Heating		11,000	J		40	,000	85,292		22%	09
Refrigeration		510,000	510,000				1,740,120		102%	09
Space Cooling		20,000	5 C		68,2		68,240		2%	0%
Digital PRV Upgrade						-	0%	0%	0%	% 0%
Replace Roof						-	0%	0%	0%	% 0%
		Total Savings (QA-QC)	604,000	7,800	0 80,000	2,936,368	3 60%	30%	54%	<mark>%</mark> 47%
	Total Sa	avings (EEM Summary)			2,936,368					
		Total Historical Use	1,000,000	25,740	0 148,500	6,191,109	<u>/</u>			

Level 2 Distributed Energy

Qualitative Assessment only

Requires

- One Distributed Energy Resource (e.g. cogen)
- One Renewable Energy Resource (e.g. Solar PV)
- Include an <u>estimate</u> of the system size, configuration, savings, cost, and simple payback

Reporting Forms

Level 2 Audit - Building Envelope Characteristics

Total exposed above grade wall area		sq ft	Insulation level (R-value)		
Below grade wall area		sq ft	Insulation level (R-value)		
Roof area		sq ft	Insulation level (R-value)		
Cool Roof (Y/N)					
Roof condition					
Fenestration Seal Condition					
Overall Enclosure Tightness Assessment					
Description of Exterior doors**					
Cool Roof: Yes = White, not asphalt shingle; No = Other, including all asphalt shingles					
Glazing area, approx % of exposed wall area [10, 25, 50, 75, 90, 100]*					

Above grade wall common area with other conditioned buildings (ft2)

General Building Shape*

Construction Properties (check all that apply)

Roof Construction*	Floor Construction*	Wall Construction(s)*
Built up with metal deck	Concrete (above unconditioned space)	Brick/stone on steel frame
Built up with concrete deck	🔲 Slab on grade	Brick/stone on masonry
Built up with wood deck	Steel joist	Brick/stone on wood frame
Metal surfacing	🗌 Wood frame	Metal panel / Curtain wall
Shingles/Shakes	Other	Sliding on steel frame
Other		Sliding on wood frame
		Other
Fenestration Frame Type(s)*	Fenestration glass type(s)*	Foundation Type*
Metal	Single pane	Slab on Grade
Metal with thermal breaks	Doublepane	Crawlspace
Wood/Vinyl/Fiberglass	Double pane with low e	Basement
Exterior Glass Doors***	🔲 Triple pane	🗌 Unknown
Other	Triple pane with low e	Other
	Other	

Reporting Forms

Level 2 Audit - HVAC System								
HVAC Properties (check all that apply)								
Zone Controls	 Direct Digital (DDC) Pnuematic Progammable tstats Manual tstats 	Central Plant Controls	 Building Automation System (BAS) Direct Digital (DDC) Pnuematic Other 					
Outside Air*	 Temperature Economizer Enthalpy Economizer No Functioning Economizer Dedicated OA System 	Heat Recovery	Enthalpy Sensible (Temp Only)					
Exhaust Fans	 No Mechanical Exhaust (natural only, i.e. windows, doors or gravity shafts) Exhaust Fans Only Supply and Exhaust Fans 							
Cooling Distribution Equipment Type*	Hydronic to zone equipment (e.g. fan coil units, packaged terminal units or radiators) Refrigerant to zone equipment (e.g. fan coil units, packaged terminal units or radiators)							
Heating Distribution Equipment Type*	Air Handler Unit (AHU) Hydronic to zone equipment (e.g. fa Steam to zone equipment (e.g. fan c None (i.e. electrically driven PTAc, b Other	oil units, packaged t	ed terminal units or radiators)					
Cooling	 No cooling DX cooling Central plant Chiller 	Chiller Input*	Electricity Gas Absorption Gas Steam Absortion Oil (specify grade) Steam Turbine Other Steam Absortion					
Source*	District chilled water	Compressor*	Reciprocating Scroll/Screw Centrifugal Other					
	Water-side Economizer Other (specify)	Condenser*	Air Water Ground Indirect Evaporative Direct Evaporative					

Level 3 Requirements

Reducing risk through project development

- Schematic diagram for the EEMs
- Analyze either
 - measured data; or
 - building energy modeling; or
 - engineering calculations
- Envelope measures must use building energy modeling
- Costs must be:
 - quotes from vendors willing to do the work; or
 - based on actual previous project costs for similar projects
- Life-cycle cost analysis is required for all measures
- A simplified risk assessment approach based on the impact of "key assumptions"

Where does your audit end up?

threadhes

Or here?

1	Inbox	930
	!NYSERDA	1
	°megan	
	ASHRAE	14
	BidSync	
	Bills	6
	BLDG SIM	
	CA CEC CPUC	156
	CEM	
	Cycling	2

BuildingSync Schema: What is it

"A standard language for commercial building energy audit data that software developers can use to exchange data between audit tools."

.: It's language, not a tool

No more data dead ends! _ □ X **Energy Audit** $\leftrightarrow \rightarrow$ C (i) … ♥ ☆ ≫ Ξ **Report Forms** EEM 1 Asset Score EEM 2 (online) EEM 3 **OpenStudio EnergyPlus** City's database

211 – What we didn't spec

Tried to limit burden & increase options for owners

EE for \$ cost savings is over-rated

Many users (most?) implement measures for "non-energy-saving benefits"

(aka for any other good reasons – not our biz!)

If the standard makes it hard to get your customer what they want, we're doing something wrong

Trends

CO₂ HFC phase outs Emphasis on building value

Emphasis on whole buildings M&V 2.0 Emphasis on kW = f(t) Next Steps

Green book \rightarrow users guide (in progress)

Forms are online, expect changes

Alternate focus on CO2 / GHG (?)

Enhanced focus on demand, DERs

Questions?

Jim Kelsey, PE <u>kelsey@kw-engineering.com</u>

© kW Engineering, Inc., All rights reserved.

How we're advancing EE in CA Normalized Metered Energy Consumption

→ Open source methods, transparent savings estimates Emphasis on actions that result in savings, not "bean counting"

NYSERDA REM Pilot

Now's your chance

"Virtual" Audits?

POTENTIAL

Lower cost

"Scale"

"We're still telling people they are doing simultaneous heating and cooling"

- Swapnil Shah, CEO, FirstFuel

DRAWBACKS

Recommendations are often vague – leave customers wanting

No standard – omitted from ASHRAE process

Disaggregation ≠ Recommendation

"Generic" recommendations