welcome.

building energy exchange

ENGINE 16

223 EAST 25TH STREET MANHATTAN, NY

MICHAEL INGUI, RA
Certified Passive House Designer
AMY FAILLA, RA
Certified Passive House Designer

BAXT INGUI - COMPLETED PASSIVE PROJECTS

- COMPLETED
- 7 UNDER CONSTRUCTION 3 PASSIVE HOUSE
- 11 DIFFERENT CONTRACTORS
- 8 PASSIVE PROJECTS 7 BAXT INGUI ARCHITECTS TEAMS
 - CONSULTANTS

(1) SYSTEMATIC **APPROACH**

UPPER WEST SIDE, MANHATTAN NYC

BROOKLYN HEIGHTS, **BROOKLYN NYC**

BROOKLYN HEIGHTS, **BROOKLYN NYC**

BROOKLYN HEIGHTS, **BROOKLYN NYC**

A SYSTEMATIC APPROACH

BAXT INGUI'S SYSTEMATIC APPROACH INCLUDES THESE CRITICAL STEPS:

- 1. Educating the client on passive house in an effective way.
- 2. Involving the passive house consultant before or during schematic design.
- 3. Start the certification process with your certification body early and harness their feedback as early as possible.
- 4. Select and involve a contractor as early as possible, and get them and their team certified/trained.
- 5. Hold weekly meetings.
- 6. Use the blower door as a tool.
- 7. Openly share knowledge & receive feedback with the community.

ENGINE 16

1. PHOTO: CIRCA
1950.
2. PHOTO: CIRCA
1925.
3. RENDERING OF
PROPOSED FRONT
FACADE.
CREDIT:
PERSPECTIVE ARTS

SITE PLAN / CONTEXT

NOTES

1. PLOT PLAN
(PROPOSED)
2. SITE PLAN/ CONTEXT

LEGEND

223 E. 25TH

SUBWAY STOP

BUS STOP

CITIBIKE STOP

RESTAURANT/BAR/ ENTERTAINMENT (WITHIN HIGHLIGHTED AREA)

PARK

PUBLIC FACILITIES +
INSTITUTIONS
(INCLUDING NYU, BARUCH
COLLEGE, SVA)

1" = 200'

ENGINE 16 | 223 E. 25TH

FRONT FACADE ELEVATIONS

I. EXISTING FRONT
FACADE PHOTO
(SOUTH FACING)
2. EXISTING FRONT

(SOUTH FACING)

FACADE
(SOUTH FACING)
3. PROPOSED FRONT
FACADE

REAR FACADE ELEVATIONS

1. EXISTING REAR FACADE PHOTOS (NORTH FACING)

2. EXISTING REAR FACADE

(NORTH FACING)
3. PROPOSED REAR
FACADE
(NORTH FACING)

SIDE FACADE ELEVATIONS

WEST REAR FACADE
 EAST FACADE AT
 AIR SHAFT

ENGINE 16 | 223 E. 25TH

HISTORIC + RESTORED ELEMENTS

ENGINE 16 | 223 E. 25TH

EXISTING CONDITIONS - FACADE DETAILS

EXISTING CONDITIONS - 1ST FLOOR CHURCH

EXISTING CONDITIONS - 2ND FLOOR

EXISTING CONDITIONS - FIRE POLE OPENING

CELLAR + 1ST FLOOR PLANS: COMMUNITY SPACE

1.

1. CELLAR PLAN
2. 1ST FLOOR PLAN
3. CELLAR COMMUNITY
CENTER AREA = 1113SF
4. 1ST FL. COMMUNITY
CENTER AREA = 1400SF

SKETCHES - ENTRY

- 1. EXISTING STEEL
 RAILING AT ENTRY
 2. PROPOSED ENTRY
 STAIR W/ RESTORED
 RAILING
 3. RESTORED STEEL
 RAILING

2ND FLOOR + LOFT PLANS: UNITS 2A + 2B

1. 2ND FLOOR: UNITS 2A + 2B 2. UNITS 2A + 2B STORAGE LOFTS

UNIT 2A

FEATURES

- 623 SF
- 1 BR, 1 BATH.
- IN-UNIT WASHER, DRYER,

 DISLUMA SHEE
- DISHWASHER
 INDIVIDUAL ROOM TEMPERATURE
- CONTROL
 13' TALL CEILINGS
- LARGE WINDOWS/ABUNDANT
 NATURAL LIGHT
- NATURAL LIGHT
- RECLAIMED WOOD FLOORS
- MOBILE LADDER FOR LOFT ACCESS

NOTES

- 1. AXON 2. SECTION
- 3. 2NDFLOOR PLAN
- 4. LOFT FLOOR PLAN

NOTES

- 1. AXON 2. SECTION
- 3. 2NDFLOOR PLAN 4. LOFT FLOOR PLAN

3RD + 4TH FLOOR PLANS: UNITS 3 + 4

1.

1. 3RD FLOOR: UNITS 3 AND 4 2. 4TH FLOOR: UNITS 3 AND 4

UNIT 3 DUPLEX

FEATURES

- 1165 SF DUPLEX
- 1 BR, 2 BATH.
- DOUBLE-HEIGHT SPACE + BONUS MEZZANINE SPACE
- LAUNDRY CLOSET
- INDIVIDUAL ROOM TEMPERATURE
- CONTROL
- 13' TALL CEILINGSLARGE WINDOWS/ABUNDANT NATURAL LIGHT
- DISHWASHER
- RECLAIMED WOOD FLOORS

NOTES

- AXON
 SECTION
- 3. 3RD FLOOR PLAN
- 4. 4TH FLOOR PLAN
- 5. RENDERING OF STAIR/LOFT

5TH FLOOR + ROOF PLANS: UNIT 4 & SHARED ROOF

1. 5TH FLOOR: UNIT 4 2. BULKHEAD/ROOF: UNIT 4 + SHARED ROOF

ENGINE 16 | 223 E. 25TH

UNIT 4 TRIPLEX

SKETCH + RENDERING

- 1. ROOF KEY PLAN 2. FRONT ROOF DECK
- RENDERING
 3. UNIT 4 STAIR SKETCH

BULKHEAD ELEVATIONS & PLAN

- 1. EAST BULKHEAD ELEVATION & SECTION (FACING WEST)
- 2. NORTH BULKHEAD ELEVATION (FACING NORTH)3. FRONT ROOF DECK
- RAILING (FACING SOUTH) 4. SOUTH BULKHEAD
- ELEVATION
 (FACING NORTH)
 5. SOUTH BULKHEAD
- ELEVATION (FACING NORTH)
- 6. BULKHEAD ROOF PLAN

MECHANICAL UNITS + AMENITIES

FUJITSU HEAT PUMPS (SEE MECH. PLANS FOR SPECS)

COMFOAIR 550 ERV

3. WATER HEATER: SANDEN HEAT PUMP 4. ERV: VENTACITY

5. MOTORIZED ROLLER

WALL-MOUNTED FUJITSU (SEE MECH. PLANS FOR SPECS) 7. COMMON BIKE STORAGE 8. COMMON RECYCLING 9. COMMON COMPOSTING

CEILING-MOUNTED FUJITSU (SEE MECH. PLANS FOR SPECS)

11. PYRAMID SKYLIGHT:

MECHANICAL PLANS: CELLAR + 1ST FLOOR

1. CELLAR FLOOR 2. 1ST FLOOR

MECHANICAL PLANS: 2ND FLOOR + LOFT

1. 2ND FLOOR 2. 2ND FLOOR LOFTS

MECHANICAL PLANS: 3RD + 4TH FLOOR

1. 3RD FLOOR 2. 4TH FLOOR

MECHANICAL PLANS: 5TH FLOOR, BULKHEAD & ROOF

1. 5TH FLOOR 2. BULKHEAD + ROOF

TYPICAL WALL + FLOOR ASSEMBLIES

- 1. WALL TYPE #7: NEW STEEL STUD WALL W/ EXTERIOR FOAM
- 2. WALL TYPE #4: EXISTING MASONRY WALL W/ CELLULOSE INSULATION
- 3. WALL TYPE #5:
 EXISTING MASONRY
 WALL W/ STEEL STUD
 + MINERAL WOOL
 4. ROOF TYPE #9: NEW
- 4. ROOF TYPE #9: NEW
 METAL JOIST W/
 CELLULOSE INTERIOR
 INSULATION +
 EXTERIOR FOAM
- 5. ROOF TYPE #8: NEW
 WOOD JOIST W/
 CELLULOSE INTERIOR
 INSULATION +
 EXTERIOR FOAM
 6. WALL TYPE #6: NEW
- MASONRY WALL W/
 CELLULOSE INTERIOR
 INSULAITON +
 EXTERIOR FOAM
- 7. UNIT TO UNIT AIR SEALING DETAIL
- 8. CELLAR SLAB DETAIL
 9. VESTIBULE AIR
 SEALING +
 INSULATION DETAIL

WALL DETAILS

32.00

2X4 STEEL STUD W/

MINERAL WOOL BATT

EXISTING MASONRY

WALL W/ CELLULOSE

EXISTING MASONRY

+ MINERAL WOOL

WALL W/ STEEL STUD

INSULATION

WALL + ROOF DETAILS

Φ_{A-8}= 2.614 Btu/(h·ft)

WINDOW DETAILS

* Simplified approach

<u>SECTION</u>

- 2. WINDOW INSTALL DETAIL - PLAN +
- 3. WINDOW JAMB (FIXED) THERMAL
- 4. WINDOW JAMB (OPERABLE) THERMAL
- THERMAL ANALYSIS 6. WINDOW SILL THERMAL ANALYSIS

<u>PLAN</u>

ENTRY RETROFIT AIR SEALING DETAILS

2.

1. VESTIBULE AIR-TIGHTNESS DIAGRAM

2. FRONT + REAR WALL SECTION DETAIL - AIR SEALING AROUND FIRST FLOOR JOIST

3. ENTRY DOOR + VESTIBULE DETAIL

APARTMENTS

VESTIBULE DETAIL
4. AIR-SEALING DETAIL
BETWEEN FLOORS
THAT SEPARATE

MASONRY RETROFIT DETAILS

NOTE:
THIS ENSURES INTERIOR PARTITIONS ON PERIMETER
CAN BE FRAMED W/O INTERUPTION FROM
INSULATION & PASSIVE ENVELOPE INSTALLATION

5.

- 1. BELOW GRADE FOUNDATION WALL PLAN DETAIL
- FOUNDATION WALL
 SECTION
 3 RELOW GRADE SLAR

2. BELOW GRADE

- 3. BELOW GRADE SLAB/ WALL SECTION DETAIL 4. PARTY WALL ROOF
- + PARAPET SECTION DETAIL
- 5. PIPE PENETRATION @ ROOF DETAIL
- 6. PARTY WALL / ROOF CONNECTION DETAIL

NEXT STEPS & VALUE ENGINEERING

Site197 North Miller Street

Business Case

- 1) **Scarcity** of readily available **affordable housing** gives confidence in demand
- 2) **Negligible property costs** to drive down capital requirements
- 3) Existing building stock of **structurally sound** buildings in need of renovation
- 4) Owner-paid utility model to **turn utility cost savings into income**.

This combination of factors is **common in Newburgh**, **NY** and other financially distressed areas, this project can serve as an example to be **replicated by other developers and lenders**.

North Miller Passive

Newburgh, NY

Project As Designed (PHIUS+2018)

As Designed:

- PHIUS+ 2018 certification
- Offsite Photovoltaics to satisfy source energy requirement
- Heat recovery ventilation system
- No post-occupancy monitoring

As Improved:

- PHIUS+ 2018 + Source Zero
- Offsite Photovoltaics + Maximum Onsite Photovoltaic roof array
- Upgrade to ERV
- Post-occupancy monitoring protocol
 - Site Sage electricity use
 - Temperature / RH sensors
- Information Broadcasting protocol

The Path to Zero

Step 1: Insulation & Air-tightness Annual Heating Demand

Conventional Retrofit Project As Designed (2015 IECC) (PHIUS+ 2018) kBTU/vr 51,122 50,000 45.000 **Insulation Levels Insulation Levels** - R49 Ceiling - R64 Ceiling 40.000 - R17 Walls - R35 Typ Wall - R30 Floor - R33 Floor 35.000 **Airtightness Airtightness** 30.000 - .06 cfm/ft2 - .4 cfm/ft2 25,000 20.000 15.000 12,744 10.000 5.000 (I) (II)

5.59 kBTU/ft².yr

21.72 kBTU/ft².yr

Step 2: Add Renewables

Step 2: Add Renewables kWh/yr

Retrofit Assemblies

South Wall

Typical Wall

R35

Thin Wall

R28

R70

Patches of existing plaster were left

New lime plaster coat

 Spray applied Visconn is seamingly the magic solution

Spray-applied air barrier covers inconsistent surfaces and inside corners easily

Visconn sprays on blue and dries black

 Adhesion on type O plaster-Visconn chips right off

Sistering of two different types of dimensional lumber

Tape origami around pocket beams

Dissimilar framing members and air-sealing come into conflict

- 3/8" Hole drilled between beams and filled with expanding foam

Blower Door 01:

310 cfm total .056 cfm/ft²

· 2x4 strapping installed before first blower door test

Air leaking around 2x4 strapping

Newburgh, NY

Blower Door 02:

227 cfm total .041 cfm/ft²

Blower Door 03:

195 cfm total $.035 \text{ cfm/ft}^2$

discussion.

building energy exchange

NYSERDA