ASHRAE HQ NZE Renovation

HOUSER WALKER ARCHITECTURE MCLENNAN DESIGN ASHRAE

OVERVIEW

00 Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

OVERVIEW

00 Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

CHALLENGE

ASHRAE future global headquarters

Renovating a 67,000 ft² building from 1978 near Atlanta, GA

Demonstrate a replicable process

For retrofitting a mid-century building

Achieve net-zero energy performance

While providing an exceptional workplace

Target maximum EUI 21.4 kBtu/ft²/yr

Before renewable energy. Aspirational target 15 kBtu/ft²/yr

Showcase for latest technology

Destination venue for industry visitors

Superior efficiency While providing a healthy and comfortable environment

Represent sustainability values

That ASHRAE has long held

Have a net-zero energy operation

And a zero-carbon footprint

PRINCIPLES

Climate and place inform design

Envelope tailored to task and orientation

Daylight as primary lighting source

Minimal reliance on electric lighting

Expanded thermal comfort range

Natural ventilation when appropriate

Low energy use systems

Spaces zoned thermally and acoustically

PATH TO NET ZERO ENERGY

FANS PUMPS COOLING HOT WATER HEATING LIGHTING PLUG LOADS

OVERVIEW

Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

SENSITIVITY ANALYSIS

Evaluate a series of envelope measures

To understand the sensitivity of individual characteristics

X-axes show incremental improvement

In the specific studied parameter over baseline values

Y-axes show associated impact

of improvement on annual energy use intensity

R-17 walls, R-35 roof, U-0.4 windows

Targets based in diminishing returns

PARAMETRIC STUDY

Parallel coordinates plot

To better understand the effect of different parameters

Left axes each represent a parameter

And the different evaluated properties

Right axis presents energy use intensity

Resulting from the selected parameter combination(s)

Energy and surrogate model results

Lighter lines are results from statistical surrogate models

ENERGY USE CHARACTERIZATION

Breakdown of energy by end use

To identify opportunities to improve overall performance

Windows largest heat loss component

Heating ~25% of total energy use

Solar gains largest cooling component

Cooling ~25% of total energy use

Fenestration offers largest opportunity

By further reducing conductive losses and solar gains

PATH TO NET ZERO ENERGY

FANS PUMPS COOLING HOT WATER HEATING LIGHTING PLUG LOADS

OVERVIEW

00 Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

SOLAR ORIENTATION

Summer: May to September

Extreme hot period: Jul 6-12 | Max Temp 98°F (37°C)

Winter: December to February

Extreme cold period: Jan 6-12 | Min Temp 9°F (-13°C)

Orientations to avoid: East/West

High summer solar exposure | Low solar angles

Windows to orient: North/South

Passive winter gains | Controllable summer exposure

NATURAL VENTILATION

Natural ventilation alternates

Daytime | Night purge | RH limits

605 hours with 60% RH high limit

Indoor Air Temp > 70°F | Outdoor Air Temp < 81°F

1264 hours without RH limit

Daytime operation only

3043 hours with night purge

Fan assisted nighttime economizer operation

No Natural Ventilation

Daytime Ventilation / 60% RH Limit

Indoor Operative Temperature

Daytime Ventilation / No RH Limit

Indoor Operative Temperature

Indoor Operative Temperature

Day & Night Ventilation / No RH Limit

Indoor Operative Temperature

ONSITE RENEWABLES

12,000-14,000 ft² rooftop PV area

Assuming ~50% of 28,000 $\,ft^2$ roof available for PV array

210-260 $kW_{\rm p}$ PV system capacity

Assuming 19.5% PV module efficiency

290-341 MWh annual energy generation

Assuming 15% inverter losses, 4% system losses

15-17 kBtu/ft²/yr potential EUI offset

Assuming 68,000 ft² floor area for EUI calculations

PATH TO NET ZERO ENERGY

FANS PUMPS COOLING HOT WATER HEATING LIGHTING PLUG LOADS

OVERVIEW

00 Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

PROGRAM ORGANIZATION

First principles approach

Adapted to accommodate program criteria flexibility

A - Mixed

Good inter-department workflow

B - Stratified \checkmark

Best daylight | All staff on one level | Good thermal zoning

C - Stacked

Good thermal zoning | Better proportion of program areas

ATRIUM ENCLOSURE

Existing atrium is a greenhouse

Example of exactly what not to do

New opaque roof

Provide area for additional photovoltaic panels

Deep shading on south

For optimal solar control

Insulated interior glass walls

Atrium to act as a thermal interstitial zone

EXPANDED COMFORT RANGE

Separate sensible load control

Hydronic radiant or chilled beam systems

Remove heat using convection

Using ceiling fans and natural ventilation

Maintain operative temperatures

Use higher air temperature setpoints

Higher chilled water temperature

Allow improved energy efficiency at plant

PATH TO NET ZERO ENERGY

■ FANS ■ PUMPS ■ COOLING ■ HOT WATER ■ HEATING ■ LIGHTING ■ PLUG LOADS

OVERVIEW

00 Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

FENESTRATION CONFIGURATION

30 - 0

Several window option studies

Location and sizes with respect to interior planning

IGUs in aluminum frame

Strategically designed to leave existing precast panels in place

Tuned to desired area ratios

30% on east and west | 40% on north and south

Exterior shading devices

Horizontal and vertical on east and west | Horizontal on south

SKYLIGHTS AND DAYLIGHT

Cloud ceilings over workstations

Host ceiling fans and radiant panels

Skylights over circulation zones

More ideal than having skylights directly over a workstation

Closed offices to be glass enclosed

Allow borrowed light to permeate with little obstruction

Centralized restrooms and storage

Opaque areas clustered in the center of floorplate

WALL AND ROOF INSULATION

Two-dimensional heat transfer model

LBNL THERM platform

Assess options for wall assembly

Target wall R value | Condensation potential

3.5" XPS added to interior: R-10

Thermal bridging | Condensation risk | Not recommended

3.5" XPS added to exterior: R-24

Exceeds target | Recommended

PATH TO NET ZERO ENERGY

FANS PUMPS COOLING HOT WATER HEATING LIGHTING PLUG LOADS

OVERVIEW

00 Project

01 Baseline

02 Climate

03 Program

04 Envelope

05 Systems

Roof monitor New skylight HVAC CONCEPT OVERVIEW External shades Light colored ceiling to reflect daylight Demand more from the building envelope V Both thermally and tightness – Architect Demand more from the building occupants In terms of plug loads and day lighting – Owner Utilize high efficiency systems ~50. ~300 To reduce energy demands (hydronic vs. airside, DOAS) – Engineer 11 **Right size equipment** Based on these demands – accountability required **Provide flexible and systems** Which provide exemplary environmental comfort

OPTIMIZED CONDITIONING

DOAS + Packaged ASHPs

Operable windows & Atrium exhaust | Ceiling fans

Night-flush Economizer

Fan assisted precooling of building thermal mass

Effective Ventilation

Enthalpy heat recovery | Desiccant wheel | DCV

Optimized Air Distribution

Overhead mixed air | Overhead displacement

DECOUPLED SYSTEMS

DOAS + Hydronic Terminal Units

Chilled beams | Radiant ceiling panels | DOAS boxes

Dedicated Outside Air System

Enthalpy heat recovery | Demand controlled ventilation

High Efficiency Plant

Air-to-water heat pumps | Water-to-water heat pumps

Potential Geo/Lake Exchange

Potential ground source heat exchange

RESULTING SYSTEM NEEDS

SYSTEM OVERVIEW

Radiant

Hydronic Systems reduce energy

Smaller, modular control

Control valves and ceiling fans vs VAV terminal units and ductwork

Simultaneous heating and cooling

Heat Pump and/or heat recovery machines

Decouple temperature from humidity

DOAS recover energy whenever possible

Overhead Radiant Panels

For heating/cooling at exterior zones, cooling only at interior zones

Outdoor Air-cooled Modular Heat Pump Staged Pumping

Water Source Heat Pump For transient or potentially humid spaces utilize CHWR

Air Cooled DOAS Decoupled from waterside systems

Ceiling Fans To induce cooling and improve environmental comfort

OVERHEAD RADIANT SYSTEMS

Radiant Panels

Form clouds above the occupied spaces

All heating and cooling

In these spaces are provided by the panels.

Ventilation is cool/neutral temperature air

Delivered directly to the space and not directly responsible for temperature control within the zone.

OVERHEAD RADIANT SYSTEMS

Areas between the clouds are open

To structure above and provide access for other trades mounted in the ceiling plane. No direct drilling.

Rigid piping in exposed areas

For aesthetic reasons. Insulation on supply piping only. Panel support system is required.

Duct distribution is only for ventilation

Quantities only (about 0.15 cfm/sf)

Air distribution is constant volume

Provided by Fabric Duct, reducing diffuser count and duct branches.

Ceiling fans throughout the space

Increase air mixing and induce capacity.

OVERHEAD RADIANT SYSTEMS

Panels may be piped in series (up to 64 square feet of active panel)

Quick disconnects for hoses

Allow for ease of installation and replacement.

Piping to the panels will be PEX tubing

Concealed above the cloud/array.

SUPPLEMENTAL CEILING FANS

Before Fan Install

Indoor temperature ~72F (n=29)

After Fan Install

and air conditioning failure, Indoor temperature ~80F (n=28)

Air Speeds

~40-150 fpm

want more 11%	air movement: no change 78%	want less 11%
---------------------	--------------------------------	---------------------

PATH TO NET ZERO ENERGY

FANS PUMPS COOLING HOT WATER HEATING LIGHTING PLUG LOADS

ASHRAE HQ NZE Renovation

Shreshth Nagpal | snagpal@elementaengineering.com Stanton Stafford | sstafford@integralgroup.com

