Beyond Zero Series: Big Buildings, Big Impacts

Building Energy Exchange and NYSERDA are pleased to announce the launch of the new Beyond Zero Series; "Big Buildings, Big Impacts," a panel discussion about high-impact, high-profile new construction projects: Sendero Verde, a revolutionary multi-building project in East Harlem; and 425 Concourse, a mixed-use, mixed-income development in the Bronx.

Opening Remarks

Emily Dean, Director of Housing Decarbonization, NYSERDA

Moderator

Mark Gardner, Principal, Jaklitsch/Gardner Architects

Panelists

Deborah Moelis, Principal, Handel Architects

Louis Koehl, Associate, Handel Architects

Heather McKinstry, Associate, Dattner Architects

Christoph Stump, VP Design and Construction, Trinity Financial, Inc.

October 6, 2021 | 9:00 to 10:30am | 1.5 AIA LU|HSW

Building Energy Exchange | be-exchange.org/events | 31 Chambers St

building energy exchange Beyond Zero Series: Big Buildings, Big Impacts

Building Energy Exchange

Deborah Moelis, AIA CPHDPrincipal
Handel Architects

Louis Koehl, AIA CPHD Associate Handel Architects

TEAM

Jonathan Rose Companies L+M Development Partners Acacia Network Handel Architects Steven Winter Associates Cosentini DeSimone Consulting Engineers Vidaris

October 6, 2021

Sendero Verde: Project Summary

PROJECT SUMMARY

Overall: 750,851 GSF
Residential: 653,162 GSF
Community Facilities: 78,829 GSF
Commercial: 18,860 GSF
709 Units - 100% Affordable

USERS

Students

Seniors

Neighbors

Publicly Accessible Courtyard

Making the Case for PH

The Passive House Impact: Source Energy Use Intensity (pEUI) Distribution Comparison

58% 50 kBtu/ft²/yr

Typical NYC Multifamily Residential Building¹

Source: Urban Green Council: NYC's Energy and Water Use Report, October 2017

Multifamily Passive House Building

¹EnergyStar Portfolio Manager, "U.S. Energy Use Intensity by Property Type", April 2021

Passive House Envelope & Certified Area: Economies of Scale!

— PH AIRTIGHT LAYER

PH CERTIFIED AREA

NON-CERTIFIED AREA

Exterior Wall Assemblies

Component	Efficiency
Roof	R-40
Walls	R-23 Effective
Windows - Operable	U: 0.16
Windows - Fixed	U: 0.14
Cantilevered Floors	R-11
Glazing	21%

SENDERO VERDE A
MASONRY CAVITY WALL

Component	Efficiency
Roof	R-40
Walls	R-24 Effective
Windows - Operable	U: 0.15
Windows - Fixed	U: 0.14
Cantilevered Floors	R-11
Glazing	21%

SENDERO VERDE B EIFS

Thermal Breaks: AAC Block

AAC BLOCK @ PARAPETS

THERM MODEL @ AAC PARAPET

HVAC System Comparison

HVAC Systems					
	Vertical VTAC - Air Cooled Heat Pump with Electrical / Hot Water Heat	Conventional Water Source Heat Pumps* Hybrid Water Source (alt)	VRF - Air Cooled Horizontal Ceiling / Console		
Pros	Low first cost No parasitic loads for HVAC Equipment Ease of maintenance due to location of unit (Floor mounted) Con Ed billing for 100% AC load	Commercial tenant can utilize base building system Ease of maintenance Tenant pays for 75% of cooling direct to Con Ed No insulation on piping - screw piping - no brazing required	Most efficient system for residence Quietest system		
Cons	New release - single manufacturer at current performance - other manufacturers exist but not at the same energy performance Additional air sealing required	Client has cost associated with Cooling Tower and Pumps May require submetering for conventional units in order to deduct heating requirements	 Difficult to find leaks Most expensive system to install All copper brazed piping Billing performed by the owner for all cooling loads Difficult to limit cooling due to shared condensers Metering solution determine heating and cooling of the condenser needs to be designed into the system 		

Ventilation

Balanced Ventilation with Heat Recovery Central Systems

ERVs INSTALLED ON ROOF

It's About the People!

- Enhance the living experience!
- Great acoustical separation from neighboring units and exterior.
- Low cost for heating and cooling (equitability)
- Comfortable temperatures, with option for control
- Healthy filtered fresh air 24/7

Thank You!

Passive House & Local Law 97: A Case Study

¹EnergyStar Portfolio Manager, "U.S. Energy Use Intensity by Property Type", April 2021

²New York Local Law 97 of 2019

³New York Climate Leadership and Community Protection Act

NYC ECC Updates Narrow the Gap

Requirements	PH Certification	2020 NYC ECC Compliance
Thermal Bridge (TB) Documentation	Linear and Point TBs must be documented in construction documents. A Psi-value or U-value must be incorporated into the energy model for each TB. Construction photos mus be submitted to verfiy installation for certification.	Linear and Point TBs must be documented in construciton documents. A Psi-value or U-value must be incorporated into the energy model for each TB.
Verification of required air tightness	The fully-enclosed building must pass a blower door test to verify an air leakage rate not exceeding 0.6 ACH at 50 pascals.	The fully-enclosed building shall be tested and verified as having an air leakage rate not exceeding three air changes per hour at a pressure of 0.2 inch w.g. (50 Pascals). (R402.4.1.2, with exceptions)
Balanced ventilation and energy recovery	Building ventilation system must be balanced to within 10% and all spaces must be served by an ERV/HRV.	In new buildings, every dwelling unit shall be served by a heat recovery ventilator (HRV) or energy recovery ventilator (ERV) installed per manufacturer's instructions. (R403.6.2, with exceptions)
Limit on total building energy consumption	Must not exceed a maximum source EUI based on occupancy, density, and climate zone.	Future Code Update: Local Law 32 (2018e) requires the 2025 NYCECC to set absolute limits on energy consumption of buildings greater than 25,000sf based on a TBD metric (EUI, carbon, etc.)

NOTE: THIS CHART IS JUST SOME OF A NUMBER OF RELEVANT CODE UPDATES

PASSIVE HOUSE EXAMPLE PROJECTS

Dattner Architects

425 GRAND CONCOURSE

300,000 sf | 277 units | 27 floors

1675 WESTCHESTER AVENUE

256,000 sf | 249 units | 12 floors

CHESTNUT COMMONS

300,000 sf | 275 units | 14 floors

- Cast-in-Place Concrete
- PH System: PHIUS
- VRF: 3 Pipe
- ERV: Centralized
- Metal panels on CMU backup wall
- EUI: 22.4 kBTU/SF/YR

- Bearing Wall/Block & Plank
- PH System: PHIUS
- VRF: 2 Pipe
- ERV: Centralized
- Brick on CMU backup wall
- EUI: 21.6 kBTU/SF/YR

- Cast-in-Place Concrete
- PH System: PHIUS
- VRF: 2 Pipe
- ERV: Centralized
- Brick/EIFS on metal stud backup wall
- EUI: 21.14 kBTU/SF/YR

425 GRAND CONCOURSE

ENVELOPE EFFICIENCY REQUIREMENTS

ROOF	R-30
ABOVE GRADE WALLS	R-20
BELOW GRADE WALLS	R-10
WINDOWS - INSTALLED EFFECTIVE U-VALUE	0.25 Btu/hr*ft2*F
GLAZING SHGC	0.25
FACADE AIR TIGHTNESS REQUIREMENT	0.08 cfm/sf-facade @ 50 Pascals

Courtesy of Handel Architects

SYSTEM SIZING

CONSTRUCTION

CENTRALIZED ERV DESIGN

425 Grand Concourse

CENTRALIZED ERV DESIGN

425 Grand Concourse

CONSTRUCTION

INTERNAL MOISTURE—VENTILATION UNITS

ERV

PROS-SUMMER

- Keeps moisture our of interior spaces
- Cooling loads minimized

CONS-WINTER

If internal moisture generation high, keeps moisture in

HRV

PROS-WINTER

 If moisture generation high, flushes moisture out of building

CONS-SUMMER

- High moisture exterior air brought indoors
- Cooling loads increased

FIELD BUILT ASSEMBLY

THERMALLY ISOLATING RAINSCREEN ATTACHMENT SYSTEM [KNIGHT WALL]

6" CMU

SELF-ADHERED VAPOR PERMEABLE, WATER-RESISTIVE BARRIER & AIR BARRIER [DELTA VENT-SA] FOLD IN TO THE INTERIOR AND TAPE ALL EDGES

1" FOAM ROD TO ALLOW SELF-ADHERED VAPOR PERMEABLE, WATER-RESISTIVE BARRIER & AIR BARRIER TO MOVE IN DEFLECTION (L/400 = DEFLECTION MOVEMENT = 3/8" TO 1/2")

> THERMALLY ISOLATING RAINSCREEN ATTACHMENT SYSTEM [KNIGHT WALL]

UPVC OR ALUMINUM WINDOW [U-INSTALLED = 0.25 Btu/hr.sf.yr]

CONSTRUCTION—THERMAL BREAKS

CONSTRUCTION—WINDOWS

CONSTRUCTION—EXTERIOR WALL AVB

CONSTRUCTION—EXTERIOR WALL AVB

Photo #70.01

Application of Henry Air-Bloc All Weather STPE vapor permeable air barrier was observed in progress.

Photo #70.02

Minimum wet film thickness was spot checked at multiple locations to be between approximately 22 and 28 mils.

CONSTRUCTION—SPECIAL CONDITIONS

