Beyond Zero Series: Big Buildings, Big Impacts Building Energy Exchange and NYSERDA are pleased to announce the launch of the new Beyond Zero Series; "Big Buildings, Big Impacts," a panel discussion about high-impact, high-profile new construction projects: Sendero Verde, a revolutionary multi-building project in East Harlem; and 425 Concourse, a mixed-use, mixed-income development in the Bronx. **Opening Remarks** Emily Dean, Director of Housing Decarbonization, NYSERDA Moderator Mark Gardner, Principal, Jaklitsch/Gardner Architects **Panelists** Deborah Moelis, Principal, Handel Architects Louis Koehl, Associate, Handel Architects Heather McKinstry, Associate, Dattner Architects Christoph Stump, VP Design and Construction, Trinity Financial, Inc. October 6, 2021 | 9:00 to 10:30am | 1.5 AIA LU|HSW Building Energy Exchange | be-exchange.org/events | 31 Chambers St building energy exchange Beyond Zero Series: Big Buildings, Big Impacts **Building Energy Exchange** **Deborah Moelis, AIA CPHD**Principal Handel Architects **Louis Koehl, AIA CPHD** Associate Handel Architects #### **TEAM** Jonathan Rose Companies L+M Development Partners Acacia Network Handel Architects Steven Winter Associates Cosentini DeSimone Consulting Engineers Vidaris October 6, 2021 ### **Sendero Verde: Project Summary** #### **PROJECT SUMMARY** Overall: 750,851 GSF Residential: 653,162 GSF Community Facilities: 78,829 GSF Commercial: 18,860 GSF 709 Units - 100% Affordable #### **USERS** Students Seniors **Neighbors** # **Publicly Accessible Courtyard** ### Making the Case for PH The Passive House Impact: Source Energy Use Intensity (pEUI) Distribution Comparison 58% 50 kBtu/ft²/yr Typical NYC Multifamily Residential Building¹ Source: Urban Green Council: NYC's Energy and Water Use Report, October 2017 Multifamily Passive House Building ¹EnergyStar Portfolio Manager, "U.S. Energy Use Intensity by Property Type", April 2021 # Passive House Envelope & Certified Area: Economies of Scale! — PH AIRTIGHT LAYER PH CERTIFIED AREA NON-CERTIFIED AREA ### **Exterior Wall Assemblies** | Component | Efficiency | |---------------------|----------------| | Roof | R-40 | | Walls | R-23 Effective | | Windows - Operable | U: 0.16 | | Windows - Fixed | U: 0.14 | | Cantilevered Floors | R-11 | | Glazing | 21% | SENDERO VERDE A MASONRY CAVITY WALL | Component | Efficiency | |---------------------|----------------| | Roof | R-40 | | Walls | R-24 Effective | | Windows - Operable | U: 0.15 | | Windows - Fixed | U: 0.14 | | Cantilevered Floors | R-11 | | Glazing | 21% | SENDERO VERDE B EIFS ### Thermal Breaks: AAC Block **AAC BLOCK @ PARAPETS** THERM MODEL @ AAC PARAPET # **HVAC System Comparison** | HVAC Systems | | | | | | |--------------|---|---|---|--|--| | | Vertical VTAC - Air Cooled Heat Pump with
Electrical / Hot Water Heat | Conventional Water Source Heat Pumps*
Hybrid Water Source (alt) | VRF - Air Cooled Horizontal Ceiling /
Console | | | | | | | | | | | Pros | Low first cost No parasitic loads for HVAC Equipment Ease of maintenance due to location of unit (Floor mounted) Con Ed billing for 100% AC load | Commercial tenant can utilize base building system Ease of maintenance Tenant pays for 75% of cooling direct to Con Ed No insulation on piping - screw piping - no brazing required | Most efficient system for residence Quietest system | | | | Cons | New release - single manufacturer at current performance - other manufacturers exist but not at the same energy performance Additional air sealing required | Client has cost associated with Cooling Tower and Pumps May require submetering for conventional units in order to deduct heating requirements | Difficult to find leaks Most expensive system to install All copper brazed piping Billing performed by the owner for all cooling loads Difficult to limit cooling due to shared condensers Metering solution determine heating and cooling of
the condenser needs to be designed into the system | | | ### Ventilation Balanced Ventilation with Heat Recovery Central Systems **ERVs INSTALLED ON ROOF** # It's About the People! - Enhance the living experience! - Great acoustical separation from neighboring units and exterior. - Low cost for heating and cooling (equitability) - Comfortable temperatures, with option for control - Healthy filtered fresh air 24/7 Thank You! ### Passive House & Local Law 97: A Case Study ¹EnergyStar Portfolio Manager, "U.S. Energy Use Intensity by Property Type", April 2021 ²New York Local Law 97 of 2019 ³New York Climate Leadership and Community Protection Act # NYC ECC Updates Narrow the Gap | Requirements | PH Certification | 2020 NYC ECC Compliance | |--|---|--| | Thermal Bridge (TB)
Documentation | Linear and Point TBs must be documented in construction documents. A Psi-value or U-value must be incorporated into the energy model for each TB. Construction photos mus be submitted to verfiy installation for certification. | Linear and Point TBs must be documented in construciton documents. A Psi-value or U-value must be incorporated into the energy model for each TB. | | Verification of required air tightness | The fully-enclosed building must pass a blower door test to verify an air leakage rate not exceeding 0.6 ACH at 50 pascals. | The fully-enclosed building shall be tested and verified as having an air leakage rate not exceeding three air changes per hour at a pressure of 0.2 inch w.g. (50 Pascals). (R402.4.1.2, with exceptions) | | Balanced ventilation and energy recovery | Building ventilation system must be balanced to within 10% and all spaces must be served by an ERV/HRV. | In new buildings, every dwelling unit shall be served by a heat recovery ventilator (HRV) or energy recovery ventilator (ERV) installed per manufacturer's instructions. (R403.6.2, with exceptions) | | Limit on total building energy consumption | Must not exceed a maximum source EUI based on occupancy, density, and climate zone. | Future Code Update: Local Law 32 (2018e) requires the 2025 NYCECC to set absolute limits on energy consumption of buildings greater than 25,000sf based on a TBD metric (EUI, carbon, etc.) | NOTE: THIS CHART IS JUST SOME OF A NUMBER OF RELEVANT CODE UPDATES # PASSIVE HOUSE EXAMPLE PROJECTS ### **Dattner Architects** #### **425 GRAND CONCOURSE** 300,000 sf | 277 units | 27 floors #### **1675 WESTCHESTER AVENUE** 256,000 sf | 249 units | 12 floors # CHESTNUT COMMONS 300,000 sf | 275 units | 14 floors - Cast-in-Place Concrete - PH System: PHIUS - VRF: 3 Pipe - ERV: Centralized - Metal panels on CMU backup wall - EUI: 22.4 kBTU/SF/YR - Bearing Wall/Block & Plank - PH System: PHIUS - VRF: 2 Pipe - ERV: Centralized - Brick on CMU backup wall - EUI: 21.6 kBTU/SF/YR - Cast-in-Place Concrete - PH System: PHIUS - VRF: 2 Pipe - ERV: Centralized - Brick/EIFS on metal stud backup wall - EUI: 21.14 kBTU/SF/YR # **425 GRAND CONCOURSE** ### **ENVELOPE EFFICIENCY REQUIREMENTS** | ROOF | R-30 | |--|------------------------------------| | ABOVE GRADE WALLS | R-20 | | BELOW GRADE WALLS | R-10 | | WINDOWS - INSTALLED
EFFECTIVE U-VALUE | 0.25 Btu/hr*ft2*F | | GLAZING SHGC | 0.25 | | FACADE AIR TIGHTNESS
REQUIREMENT | 0.08 cfm/sf-facade
@ 50 Pascals | **Courtesy of Handel Architects** # **SYSTEM SIZING** # CONSTRUCTION # **CENTRALIZED ERV DESIGN** # 425 Grand Concourse **CENTRALIZED ERV DESIGN** 425 Grand Concourse # CONSTRUCTION # INTERNAL MOISTURE—VENTILATION UNITS ### **ERV** #### PROS-SUMMER - Keeps moisture our of interior spaces - Cooling loads minimized #### **CONS-WINTER** If internal moisture generation high, keeps moisture in ### HRV #### PROS-WINTER If moisture generation high, flushes moisture out of building #### CONS-SUMMER - High moisture exterior air brought indoors - Cooling loads increased # FIELD BUILT ASSEMBLY THERMALLY ISOLATING RAINSCREEN ATTACHMENT SYSTEM [KNIGHT WALL] 6" CMU SELF-ADHERED VAPOR PERMEABLE, WATER-RESISTIVE BARRIER & AIR BARRIER [DELTA VENT-SA] FOLD IN TO THE INTERIOR AND TAPE ALL EDGES 1" FOAM ROD TO ALLOW SELF-ADHERED VAPOR PERMEABLE, WATER-RESISTIVE BARRIER & AIR BARRIER TO MOVE IN DEFLECTION (L/400 = DEFLECTION MOVEMENT = 3/8" TO 1/2") > THERMALLY ISOLATING RAINSCREEN ATTACHMENT SYSTEM [KNIGHT WALL] UPVC OR ALUMINUM WINDOW [U-INSTALLED = 0.25 Btu/hr.sf.yr] # CONSTRUCTION—THERMAL BREAKS # **CONSTRUCTION—WINDOWS** # CONSTRUCTION—EXTERIOR WALL AVB # CONSTRUCTION—EXTERIOR WALL AVB #### Photo #70.01 Application of Henry Air-Bloc All Weather STPE vapor permeable air barrier was observed in progress. #### Photo #70.02 Minimum wet film thickness was spot checked at multiple locations to be between approximately 22 and 28 mils. # CONSTRUCTION—SPECIAL CONDITIONS